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1 Electrodiffusion

We previously discussed how the motion of freely dissolved ions and macromolecules
is governed by diffusion, the random motion of molecules that results from fluctu-
ating forces. This picture largely holds in the presence of weak forces that merely
add a slight bias to the motion, such as the case of electric fields across membrane
pores. In particular, in the presence of an electric field the motion is limited by
the collisions so that the velocity, as opposed to acceleration, is proportional to the
force. We have

~vD(~r, t) = µ~E(~r, t) (1.1)

= −µ~∇V (~r, t)

where ~vD(~r, t) is known as the drift velocity and µ is the mobility. The joke is
that life is diffusion with a small drift velocity.

How big are these terms? Without proof, we note that |~vD| ≈ 101 cm
s

= 102 µm
ms

in
membranes and |~vD| ≈ 10−5 cm

s
= 10−4 µm

ms
in cytoplasm.

We can now calculate the flux due to the electric field as

~JD(~r, t) = C(~r, t)~vD(~r, t) (1.2)

= µC(~r, t) ~E(~r, t)

= −µC(~r, t)~∇V (~r, t)

Thus the total flux, thermal as well as force driven, is

~J(~r, t) = −D∇C(~r, t)− µC(~r, t)~∇V (~r, t) (1.3)

At equilibrium, ~J(~r, t) = 0 and thus

C(~r) = C(~r′)e−
µ
D
(V (~r)−V (~r′)) (1.4)

or

∆V = V (~r)− V (~r′) = −D
µ
ln

(
C(~r)

C(~r′)

)
(1.5)

but we previously showed that this equilibrium potential is just given by the
Nernst formula, i.e.,

∆V = −kBT
e
ln

(
C(~r)

C(~r′)

)
(1.6)
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Thus
µ = D

e

kBT
(1.7)

We can estimate the size of |~vD| for membranes and compare it with the RMS
thermal velocity, |~vth|, since the concept of the drift velocity holds only if |~vD| <<
|~vth|. For a membrane, the electric field is of order | ~E| = V

L
∼ kBT

e
1
L

so that |~vD| =

µ| ~E| ∼ D e
kBT

kBT
e

1
L
≈ D

L
. On the other hand, we discussed earlier that the scale of

the thermal velocity is |~vth| ∼ λ
τ
≈ D

λ
. Thus

|~vD| ∼
λ

L
|~vth| ∼ 0.1|~vth| (1.8)

so that the thermal velocity is relatively small for distances larger than the
collision length, a rather intuitive result. On the other hand, for large electric fields
may may anticipate a deviation from a simple linear relationship between | ~E| and
|~vD|, a topic we will return to.

Since we previously argued that the thermal velocity can be estimated from

equipartition, i.e., |~vth| ∼
√

kBT
m

, we have

|~vD| ∼ c

√
kBT

mc2
λ

L
(1.9)

from which we can estimate the absolute size of the drift velocity for membranes
to be |~vth| ∼ 10cm/s.

We can now put all of the formalism together to get a modified flux for the
diffusion equation, i.e,

~J(~r, t) = −D
(
∇C(~r, t) +

e

kBT
C(~r, t)~∇V (~r, t)

)
(1.10)

At this point, let’s cool it with the general form for 3-dimensions and focus on
the case of current through a pore of cross sectional area A that spans a membrane
of thickness L. We further assume that the electric field is uniform (probably not
true, but it allows us to make some useful progress), so that V (x) = V (0) x

L
, we have

an equation for the electrical current, I,

I = −eJ(x)A = eDA

(
dC(x)

dx
+

e

kBT
C(x)

∆V

L

)
(1.11)

where A is the area of the membrane. This equation is in the form of dC(x)
dx

+
const · C(x) = const′, which we can solve directly to obtain

I = e
D

L

eV

kBT
A
C(L)− C(0)e

− eV
kBT

1− e−
eV
kBT

(1.12)

This is known as the Nernst-Plank relation. The interesting, and essential
feature, is that the I − V curve is nonlinear for voltage changes on the order of
kBT
e
≈ 25mV away from the reversal potential.
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FIGURE - Nernst-Plank.eps

If we include the possibility of a valence, z = ±1, ±2, ±3, etc, the general form
of the Nernst-Plank relation becomes

I(V ) = z2e
D

L

eV

kBT
A
C(L)− C(0)e

− zeV
kBT

1− e−
zeV
kBT

(1.13)

and is particularly strong for divalents, such as Ca+2.
The essential physics is that it is ”easier” for currents to flow from high concen-

trations to low concentrations, so that the conductance (slope of the I−V ) is larger
when ions move from high to low, rather than from low to high, concentration. This
property in known as rectification, and is a ”normal” property of any cell membrane.
The limiting currents are Ohmic, with

I(V )→


z2eD

L

(
eV
kBT

)
AC(L) if V >> kBT

e

z2eD
L

(
eV
kBT

)
AC(0) if V << −kBT

e

These asymptotic relations are often good approximations, and for the better
or worse most physiologists assume that the I-V relation is Ohmic. But do this at
your peril. Hagiwara made this assumption about the ”Inward Rectifier” for K+

and came to some erroneous conclusions about his data!

1.1 The resting potential of a neuron

In steady-state, the total current across the cell membrane is zero. When only a
single ionic species can pass across the membrane, i.e., when the current is carried by
only a single ionic species, the steady-state potential is also the equilibrium potential
and we recover the Nernst potential. In general, however, multiple ions contribute
to the current flow across the membrane. We focus on a cell with just 3 of these,
Na+, K+ and Cl−. There is a Nernst-Plank current associated with each ion, i.e.,

INa+(V ) = eA
(
D

L

)
Na+

eV

kBT

[Na+]in − [Na+]oute
− eV
kBT

1− e−
eV
kBT

(1.14)

IK+(V ) = eA
(
D

L

)
K+

eV

kBT

[K+]in − [K+]oute
− eV
kBT

1− e−
eV
kBT

(1.15)

ICl−(V ) = eA
(
D

L

)
Cl−

eV

kBT

[Cl−]in − [Cl+]oute
eV
kBT

1− e
eV
kBT

(1.16)

In steady state, we must have

INa+(V ) + IK+(V ) + ICl−(V ) = 0 (1.17)
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This condition is satisfied for only a single voltage. The algebra is easy to do

it you recall that one should solve for e
eV
kBT rather than directly for V (it is also

easy if one ignores divalents, like Ca+2!). The steady state potential is given by
(Goldman-Hodgkin-Katz equation)

VSS =
kBT

e
ln

(
D
L

)
K+

[K+]out +
(
D
L

)
Na+

[Na+]out +
(
D
L

)
Cl−

[Cl−]in(
D
L

)
K+

[K+]in +
(
D
L

)
Na+

[Na+]in +
(
D
L

)
Cl−

[Cl−]out
(1.18)

The fraction D
L

is often called the permeability, denoted P . Actually, the perme-
ability is defined with the addition of a mystery fudge factor in front! We will see
below that the permeability is dependent on concentration such that the channels
are significantly saturated at physiological ion concentrations.

As we mentioned on the first day, VSS typically has a value of about -50 mV.
Ion substitution experiments that maintain a constant total ion concentration have
confirmed this relation.

FIGURE - Goldman.doc

1.2 Relations among ”Diffusive” processes

Since in the linear limit (i.e., zeV
kBT
→ ±∞) the I − V relation must reduce to Ohm’s

law, i.e., I = g πa
2

L
V , we have the relation

g =
(ze)2DC(L)

kBT
(1.19)

In general, we recall that the diffusion constant (D), the mobility (µ), the vis-
cosity (η), and the electrical conductance (g) are all related. We recapitulate this
below,

D = g
kBT

(ze)2Cions
= µ

kBT

ze
=

1

η

kBT

6πa
(1.20)

where the viscosity relation for a particle of radius a is not really useful for ions
per se.

Lastly, as a practical issue, to convert from ”physics” units to ”chemical” units,
one replaces kB by R = NA · kB and e by F = NA · e and measures concentration in
molar (moles/liter) rather than ions per cm3.

1.3 Channel Saturation

One expects that the current will not increase without bound as the ionic concen-
tration increases. This may occur as the kinetics of channels limit the current.
A simple example of kinetic limitations is to consider a channel with a single ion
binding site. The current will follow saturation characteristics for enzyme binding

4



(Michaelis-Menten kinetics), so that, e.g., the above limiting case for the current
(V >> kBT

e
) becomes

I(V )→ z2e
D

L

(
eV

kBT

)
πa2

C(L)

1 + C(L)
Keq

(1.21)

FIGURE - Channel-conductances.eps

Beyond this effect, steric hindrance and electrostatic repulsion will further limit
the currents. Hille has a nice discussion of this.

The bottom line is that the saturation effects are substantial near physiolog-
ical concentrations. Thus the permeability of channels will be implicitly concen-
tration dependent, and formulas like the Goldman-Hodgkin-Katz equation for the
steady-state membrane potential must be applied with permeabilities chosen for, or
corrected for, the concentrations used in the particular experiment.

One further expects that the current will not increase without bound as the
voltage increases. This may occur as a depletion region develops at one end of the
channel, and a space charge region develops at the other end. In effect, the voltage
causes a concentration-based limitation. An easy way to estimate this effect is to
consider the diffusion equation for a point source (pore opening).

At steady state, ∂C(~r,t)
∂t

= 0 so that

−D∇2C(~r) = I(∞)δ(~r − ~r′) (1.22)

where I(∞) = I(V →∞). This is just Poisson’s equation for a point charge, so
that

−D∇2C(~r) = I(∞)
(
− 1

4π
∇2

(
1

~r − ~r′
))

(1.23)

Thus, integrating over a hemisphere (so that the source doubles compared to the
full spherical solution) we have

C(~r) =
I(∞)

2πD

1

r
+ Constant (1.24)

This modifies the concentrations on opposite sides of the pore to read

C(0) = Co(0) +
I(∞)

2πDa
(1.25)

C(L) = Co(L)− I(∞)

2πDa
(1.26)

The current will saturate at a maximal value when the concentrations on opposite
sides of the pore are equal, i.e., C(0) = C(L). Then the electrical current is

eI(∞) = eπDa [Co(L)− Co(0)] (1.27)
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An order of magnitude estimate of this space charge effect for a channel with a
10Å pore diameter is 30x10−12 Amperes. This is close to the measured saturation
levels for K+ flow through the Ca2+-activated K+ channel.

FIGURE - Space-charge-or-not.eps

Lastly, we can substitute the corrected form for the concentration back into the
Nernst-Plant relation. Thus, for example, the above limiting case for the current
through the pore becomes (V >> kBT

e
) becomes

I(V )→
z2eD

L

(
eV
kBT

)
πa2C(L)

1 + a
2L

(
eV
kBT

) (1.28)
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Squid Axon

External
Fluid

[K+]o

in mM
[Na+]o

in mM
[Cl-]o

in mM
Measured
RP (mV)

Calculated
RP (mV)

Difference
(mV)

ASW 10 455 587 -60 -60 0
A 0 465 587 -63 -65 +2
B 15 450 587 -58 -58 0
C 20 445 587 -56 -56 0
Sea Water 10 455 540 -59 -59 0
D 7 324 384 -59 -60 +1
E 5 227 270 -61 -61 0
F 3 152 180 -61 -61 0
G 2 91 108 -63 -62 -1
H 10 573 658 -60 -59 -1
I 10 711 796 -57 -59 +2
Adapted from Hodgkin and Katz (1949)
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